Mathe Kurse – Den Anschluss wiederfinden!

Hier findest Du den Mathe Stoff der gesamten Oberstufe, aufgeteilt in modulare Kurse. Jedes Modul behandelt einen ganzen Themenkomplex. In den Kursen ist für die einzelnen Inhalte etwas mehr Zeit eingeplant, als in den Workshops. Wenn Du in Mathe verloren bist, dann kannst Du die Kurse nutzen, um wieder Anschluss zu finden. Oder Du nutzt die Kurse als langfristige Abiturvorbereitung. Es gibt zwar auch spezielle Kurse für die Abiturvorbereitung, aber die behandeln den Stoff deutlich schneller und komprimiert. Wenn Du bestimmte Themen noch nicht verstanden hast, sind die Kurse auf dieser Seite wesentlich besser geeignet, um das nachzuholen!

Nicht alle Kurse werden zur gleichen Zeit gleich stark nachgefragt. Zudem sind unsere Ressourcen begrenzt. Um trotzdem ein vollständiges Angebot zu ermöglichen, wird ein Kurs dann eingerichtet, wenn es Nachfrage gibt. Mit einer unverbindlichen Anfrage signalisierst Du Interesse und wir wissen: Da ist Bedarf! Dann lenken das online Marketing auf diesen Kurs, so dass er schneller voll wird.

1. Jahr der Oberstufe (Klasse 11 in G9, Klasse 10 in G8, E-phase in Hessen)

Lineare- und quadratische Funktionen, Potenzfunktionen

Terme, Binome, Gleichungen, lineare-, quadratische- und Potenzfunktionen

1,5 Stunden pro Woche, Kursdauer: 6 Wochen, insgesamt 9 Stunden.

Differentialrechnung

Ganzrationale Funktionen: Nullstellen, Steigung, Ableitung, Tangenten, Extrempunkte, Wendepunkte, Kurvendiskussion etc.

2 x 1,5 Stunden pro Woche, Kursdauer: 5 Wochen, insgesamt 15 Stunden

Anwendung der Differentialrechnung

Anwendung der Kurvenuntersuchung, Rekonstruktion von Funktionen, Extremalprobleme

2 x 1,5 Stunden pro Woche, Kursdauer: 3 Wochen, insgesamt 9 Stunden

Exponentielles Wachstum

Logarithmus, lösen von Exponentialgleichungen, Aufstellen von Exponentialfunktionen und Anwendungsaufgaben

2 x 1,5 Stunden pro Woche, Kursdauer: 3 Wochen, insgesamt 9 Stunden

e-Funktionen

Produkt- und Kettenregel für Ableitungen, Einführung in die e-Funktion, Kurvenuntersuchung mit e-Funktionen

2 x 1,5 Stunden pro Woche, Kursdauer: 4 Wochen, insgesamt 12 Stunden

Trigonometrische Funktionen

Grundlagen zur  Sinus- und Kosinusfunktion, Ableitung, Kurvenuntersuchung, Anwendungsaufgaben

2 x 1,5 Stunden pro Woche, Kursdauer: 4 Wochen, insgesamt 12 Stunden

2. Jahr der Oberstufe – erstes Halbjahr (Klasse 12 in G9, Klasse 11 in G8, Q1 in Hessen)

Integralrechnung

Stammfunktion, unbestimmte und bestimmte Integrale, Flächenberechnungen, Anwendungsaufgaben

2 x 1,5 Stunden pro Woche, Kursdauer: 5 Wochen, insgesamt 15 Stunden

Vertiefung der Analysis

Vertiefung der Differential- und Integralrechnung auf Abiturniveau. Aufgabentypen: Ganzrationale Funktionen, e-Funktionen, trigonometrische Funktionen

2 x 1,5 Stunden pro Woche, Kursdauer: 4 Wochen, insgesamt 12 Stunden

2. Jahr der Oberstufe – zweites Halbjahr (Klasse 12 in G9, Klasse 11 in G8, Q2 in Hessen)

Analytische Geometrie I

Lineare Gleichungssysteme, Orientierung im Raum, Vektoren.

2 x 1,5 Stunden pro Woche, Kursdauer: 5 Wochen, insgesamt 15 Stunden

Analytische Geometrie II

Geraden und Ebenen, komplexe Aufgaben auf Abiturniveau

2 x 1,5 Stunden pro Woche, Kursdauer: 5 Wochen, insgesamt 15 Stunden

3. Jahr der Oberstufe – erstes Halbjahr (Klasse 13 in G9, Klasse 12 in G8, Q3 in Hessen)

Stochastik I

Beschreibende Statistik (Häufigkeiten, Kennwerte berechnen), Wahrscheinlichkeitsbegriff, Zufallsversuche, Baumdiagramme, bedingte Wahrscheinlichkeit, Kombinatorik

2 x 1,5 Stunden pro Woche, Kursdauer: 4 Wochen, insgesamt 12 Stunden

Stochastik II

Wahrscheinlichkeitsverteilungen, Zufallsgrößen, Erwartungswert, Varianz, Standardabweichung, Binomialverteilung, Bernoulli-Ketten, Hypothesentest

2 x 1,5 Stunden pro Woche, Kursdauer: 5 Wochen, insgesamt 15 Stunden